Publications

2022-present

 

141. B. J. Neyhouse, N. A. Price, F. R. Brushett, A Computationally Efficient, Zero-Dimensional Stack Model for Simulating Redox Flow Battery Performance. Journal of the Electrochemical Society, 2025. DOI: 10.1149/1945-7111/ad9e30


140. K. M. Ripley, F. R. Brushett, Modeling and Comparative Analysis of CO2 Absorption Columns in Electrochemical and Thermochemical Carbon Capture Systems. Ind. Eng. Chem. Res., 2024. DOI: 10.1021/acs.iecr.4c01523


139. L. E. Clarke, K. M. Ripley, F. R. Brushett, Insights into Energetic Penalties in Electrochemical CO2 Separation Systems. Ind. Eng. Chem. Res., 2024. DOI: 10.1021/acs.iecr.4c01763


138. B.J. Neyhouse, F. R. Brushett, A Spreadsheet-Based Redox Flow Battery Cell Cycling Model Enabled by Closed-Form Approximations. Journal of The Electrochemical Society, 2024. DOI: 10.1149/1945-7111/ad5d68


137. C.T. Mallia, F. R. Brushett, Phenomenological Observations of Quinone-Mediated Zinc Oxidation in an Alkaline Environment. Chem. Commun. 2024. DOI: 10.1039.D4CC02746A


136. R. Wang, K. Yang, C. Wong, H. Aguirre-Villegas, R. Larson, F. R. Brushett, M. Qin, and S. Jin, Electrochemical ammonia recovery and co-production of chemicals from manure wastewater, Nature Sustainability, 2024, 7, 2, 179–190. DOI: 10.1038/s41893-023-01252-z


135. L. Kong, Y. Zhu, P. J. Williams, M. Kabbani, F. R. Brushett, and J. L. M. Rupp, Insights into Li+ storage mechanisms, kinetics, and reversibility of defect-engineered and functionalized multiwalled carbon nanotubes for enhanced energy storage, Journal of Materials Chemistry A, 2024, 12, 4299-4311. DOI: 10.1039/D3TA07362A


134. K. M Tenny, Y. -M. Chiang, and F. R. Brushett, Electrochemical Residence Time Distribution as a Diagnostic Tool for Redox Flow Batteries, Journal of The Electrochemical Society, 2023, 170, 12, 120518. DOI: 10.1149/1945-7111/ad0807


133. A. H. Quinn, K. M. Ripley, N. J. Matteucci, B. J. Neyhouse, C. A. O. Brown, W. P. Woltmann, and F. R. Brushett, Elucidating the effects of temperature on nonaqueous redox flow cell cycling performance, Journal of The Electrochemical Society, 2023, 170, 12, 120520. DOI: 10.1149/1945-7111/ad0e44


132. N .J. Matteucci, C. T. Mallia, B. J. Neyhouse, M. V. Majji, and F. R. Brushett, Toward Electrochemical Design Principles of Redox-Mediated Flow Batteries, Current Opinion in Electrochemistry, 2023, 42, 101380. DOI: 10.1016/j.coelec.2023.101380


131. A. M. Fenton, Jr., B. J. Neyhouse, K. M. Tenny, Y. Chiang, F. R. Brushett, An automated and lightweight framework for electrolyte diagnostics using quantitative microelectrode voltammetry, Journal of Electroanalytical Chemistry, 2023, Volume 947, 117689


130. C. T. Wan, R. M. Darling, Y. Chiang, F. R. Brushett, Modeling Nanoscale Ohmics in Carbon Supports of Fuel Cell Cathodes, Journal of the Electrochemical Society, 2023. DOI: 10.1149/1945-7111/acd4ef


129. W. Gao, J. Drake, F. R. Brushett, Modeling the Impact of Electrolyte Flow on Heat Management in a Li-Ion Convection Cell, Journal of the Electrochemical Society, 2023. 170 (9), DOI: 10.1149/1945-7111/aceab4


128. B. J. Neyhouse, R. M. Darling, J. D. Saraidaridis, F. R. Brushett, A method for quantifying crossover in redox flow cells through compositionally unbalanced symmetric cell cycling, Journal of the Electrochemical Society, 2023. 170 (8), 080514. DOI: 10.1149/1945-7111/ace938


127. A. M. Zito, L. E. Clarke, J. M. Barlow, D. Bim, Z. Zhang, K. Ripley, C. J. Li, A. Kummeth, M. E. Leonard, A. N. Alexandrova, F. R. Brushett, and J. Y. Yang, Electrochemical Carbon Dioxide Capture and Concentration, Chem. Rev. 2023, 123, 13, 8069–8098. DOI: https://doi.org/10.1021/acs.chemrev.2c00681


126. T. A. Weiss, G. Fan, B. J. Neyhouse, E. B. Moore, A. L. Furst, F. R. Brushett, Characterizing the Impact of Oligomerization on Redox Flow Cell Performance, Batteries and Supercaps, Chemistry Europe, 2023. 6 (8), DOI: https://doi.org/10.1002/batt.202300034


125. M. V. Majji, B. J. Neyhouse, N.J. Matteucci, K. R. Lennon, C. T. Mallia, A. M. Fenton, Jr., J. W. Swan, and F. R. Brushett, Modeling Electrochemical and Rheological Characteristics of Suspension-Based Electrodes for Redox Flow Cells, Journal of The Electrochemical Society, 2023, 170 050532. DOI: 10.1149/1945-7111/accb74


124. A. M. Fenton, Jr., F. R. Brushett, Leveraging graphical models to enhance in situ analyte identification via multiple voltammetric techniques, Journal of Electroanalytical Chemistry, 2023, Volume 936, 117299. DOI: https://doi.org/10.1016/j.jelechem.2023.117299


123. K. E. Rodby, R. L. Jaffe, E. A. Olivetti, F. R. Brushett, Materials availability and supply chain considerations for vanadium in grid-scale redox flow batteries, Journal of Power Sources, 2023, Volume 560, 232605. DOI: https://doi.org/10.1016/j.jpowsour.2022.232605


122. J. J. Patil, C. T. Wan, S. Gong, Y. Chiang, F. R. Brushett, and J. C. Grossman, Bayesian-Optimization-Assisted Laser Reduction of Poly(acrylonitrile) for Electrochemical Applications, ACS Nano, 2023. 17, 5, 4999–5013. DOI: https://doi.org/10.1021/acsnano.2c12663


121. C. T. Wan, A. Ismail, A. H. Quinn, Y. Chiang, F. R. Brushett, Synthesis and Characterization of Dense Carbon Films as Model Surfaces to Estimate Electron Transfer Kinetics on Redox Flow Battery Electrodes, Langmuir, 2023. 39, 3, 1198–1214, DOI: https://doi.org/10.1021/acs.langmuir.2c03003


120. A. P. Kaur, B. J. Neyhouse, I. A. Shkrob, Y. Wang, N. H. Attanayake, R. K. Jha, Q. Wu, L. Zhang, R. H. Ewoldt, F. R. Brushett, S. A. Odom, Concentration-dependent cycling of phenothiazine-based electrolytes in nonaqueous redox flow cells, Chemistry an Asian Journal, 2023. 18(5), e202201171. DOI: https://doi.org/10.1002/asia.202201171


119. C. T. Wan, K. E. Rodby, M. L. Perry, Y. Chiang and F. R. Brushett, Hydrogen evolution mitigation in iron-chromium redox flow batteries via electrochemical purification of the electrolyte, Journal of Power Sources, 2023. 54, 232248, DOI: 10.1016/j.jpowsour.2022.232248


118. A. M. Fenton, Jr., Y. A. Gandomi, C. T. Mallia, B. J. Neyhouse, A. Kpeglo, W. E. Exson, C. T. Wan, and F. R. Brushett, Toward a Mechanically Rechargeable Solid Fuel Flow Battery Based on Earth-Abundant Materials, ACS Omega, 2022. DOI: 10.1021/acsomega.2c05798


117. J. M. Barlow, L. E. Clarke, Z. Zhang, D. Bím, K. M. Ripley, A. Zito, F. R. Brushett, A. N. Alexandrova, and J. Y. Yang, Molecular Design of Redox Carriers for Electrochemical CO2 Capture and Concentration, Chemical Society Reviews, 2022. DOI: 10.1039/D2CS00367H


116. B. J. Neyhouse, J. Lee, F. R. Brushett, Connecting material properties and redox flow cell cycling performance through zero-dimensional models, Journal of The Electrochemical Society, 2022. 169(9), 090503 – DOI: 10.1149/1945-7111/ac86aa


115. A. M. Fenton Jr., R. Kant Jha, B. J. Neyhouse, A. P. Kaur, D. A. Dailey, S. A. Odom, F. R. Brushett, On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries, Journal of Materials Chemistry A, 2022. DOI: 10.1039/d2ta00690a
In memory of Prof. Susan A. Odom


114. M. S. Pan, L. Su, , S. L. Eiler, L. W. Jing, A. F. Badel, Z. Li, F. R. Brushett, and Y. Chiang, Electrochemical Stability and Reversibility of Aqueous Polysulfide Electrodes Cycled Beyond the Solubility Limit, Journal of The Electrochemical Society, 2022. DOI: 10.1149/1945-7111/ac7669


113. K. M. Tenny, K.V. Greco, M. V. Heijden, T. Pini, A. Mularczyk, A. Vasile, J. Eller, A. Forner-Cuenca, Y. Chiang, and F. R. Brushett, A Comparative Study of Compressive Effects on the Morphology and Performance of Carbon Paper and Cloth Electrodes in Redox Flow Batteries, Energy Technology, 2022. DOI: 10.1002/ente.202101162


112. L.E. Clarke, M.E. Leonard, T.A. Hatton, and F. R. Brushett, Thermodynamic Modeling of CO2 Separation Systems with Soluble, Redox-Active Capture Species, Industrial & Engineering Chemistry Research, 2022. DOI: 10.1021/acs.iecr.1c04185


111. R. R. Jacquemond, C. T. Wan, Y. Chiang, Z. Borneman, F. R. Brushett, K. Nijmeijer,  and A. Forner-Cuenca, Microstructural engineering of high-power redox flow battery electrodes via non-solvent induced phase separation, Cell Reports Physical Science, 2022. DOI: 10.1016/j.xcrp.2022.100943


110. A. Alazmi, C. T. Wan, P. M. Costa, and F. R. Brushett, Exploration of Reduced Graphene Oxide Microparticles as Electrocatalytic Materials in Vanadium Redox Flow Batteries, Journal of Energy Storage, 2022, 50,104192


109. M. L. Perry, K. E. Rodby, and F. R. Brushett, Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries, ACS Energy Letters, 2022. 7, 659-667


108. B. A. Simon, A. Gayon-Lombardo, C. A. Pino-Muñoz, C. E. Wood, K. M. Tenny, K. V. Greco, S. J. Cooper, A. Forner-Cuenca, F. R. Brushett, A. R. Kucernak, and N. P. Brandon, Combining Electrochemical and Imaging Analyses to Understand the Effect of Electrode Microstructure and Electrolyte Properties on Redox Flow Batteries, Applied Energy, 2022.
306 (Part B), 117678


107. A. M. Fenton Jr. and F. R. Brushett, Using Voltammetry Augmented with Physics-based Modeling and Bayesian Hypothesis Testing to Identify Analytes in Electrolyte Solutions, Journal of Electroanalytical Chemistry, 2022. 904, 115751


106. C. T. Wan, K. V. Greco, A. Alazmi, R. M. Darling, Y.-M. Chiang, and F. R. Brushett, Methods—A Potential–Dependent Thiele Modulus to Quantify the Effectiveness of Porous Electrocatalysts, Journal of the Electrochemical Society, 2021. 168(12), 123503


105. Z. Cheng, K. M. Tenny, A. Pizzolato, A. Forner-Cuenca, V. Verda, Y.-M. Chiang, F. R. Brushett, and R. Behrou, A Generalized Reduced Fluid Dynamic Model for Flow Fields and Electrodes in Redox Flow Batteries, AIChE Journal, 2021. DOI: 10.1002/aic.17540


104. B. J. Neyhouse, K. M. Tenny, Y.-M. Chiang, and F. R. Brushett, Microelectrode-Based Sensor for Measuring Operando Active Species Concentrations in Redox Flow Cells, ACS Applied Energy Materials, 2021. 4(12), 13830-13840


103. K. V. Greco, J. K. Bonesteel, N. Chanut, C. T. Wan, Y.-M. Chiang, and F. R. Brushett, Limited Accessibility to Surface Area Generated by Thermal Pretreatment of Electrodes Reduces Its Impact on Redox Flow Battery Performance, ACS Applied Energy Materials, 2021. 4(12), 13516-13527


102. Y. Ashraf Gandomi, I. V. Krasnikova, N. O. Akhmetov, N. A. Ovsyannikov, M. A. Pogosova, N. J. Matteucci, C. T. Mallia, B. J. Neyhouse, A. M. Fenton Jr., F. R. Brushett, and K. J. Stevenson, Synthesis and Characterization of Lithium-Conducting Composite Polymer–Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries, ACS Applied Materials & Interfaces, 2021. 13(45), 53746-53757


101. B. J. Neyhouse and F. R. Brushett, From the Synthesis Vial to the Full Cell: Electrochemical Methods for Characterizing Active Materials for Redox Flow Batteries, Encyclopedia of Energy Storage, 2022. 2, 453-465

2018-2021

2014-2017

2006-2013 (pre-MIT)